
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261288969

General dynamic recovery for compensating CSP

Article in Electronic Proceedings in Theoretical Computer Science · March 2014

DOI: 10.4204/EPTCS.143.1

CITATIONS

2
READS

39

2 authors, including:

Abeer Al-Humaimeedy

King Saud University

13 PUBLICATIONS 195 CITATIONS

SEE PROFILE

All content following this page was uploaded by Abeer Al-Humaimeedy on 12 April 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/261288969_General_dynamic_recovery_for_compensating_CSP?enrichId=rgreq-88a596c2cd5136e52b0545067cfbb4bf-XXX&enrichSource=Y292ZXJQYWdlOzI2MTI4ODk2OTtBUzoyMTc1MDg1ODI4MjU5ODRAMTQyODg2OTQ5NTkwMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/261288969_General_dynamic_recovery_for_compensating_CSP?enrichId=rgreq-88a596c2cd5136e52b0545067cfbb4bf-XXX&enrichSource=Y292ZXJQYWdlOzI2MTI4ODk2OTtBUzoyMTc1MDg1ODI4MjU5ODRAMTQyODg2OTQ5NTkwMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-88a596c2cd5136e52b0545067cfbb4bf-XXX&enrichSource=Y292ZXJQYWdlOzI2MTI4ODk2OTtBUzoyMTc1MDg1ODI4MjU5ODRAMTQyODg2OTQ5NTkwMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abeer-Al-Humaimeedy?enrichId=rgreq-88a596c2cd5136e52b0545067cfbb4bf-XXX&enrichSource=Y292ZXJQYWdlOzI2MTI4ODk2OTtBUzoyMTc1MDg1ODI4MjU5ODRAMTQyODg2OTQ5NTkwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abeer-Al-Humaimeedy?enrichId=rgreq-88a596c2cd5136e52b0545067cfbb4bf-XXX&enrichSource=Y292ZXJQYWdlOzI2MTI4ODk2OTtBUzoyMTc1MDg1ODI4MjU5ODRAMTQyODg2OTQ5NTkwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/King_Saud_University?enrichId=rgreq-88a596c2cd5136e52b0545067cfbb4bf-XXX&enrichSource=Y292ZXJQYWdlOzI2MTI4ODk2OTtBUzoyMTc1MDg1ODI4MjU5ODRAMTQyODg2OTQ5NTkwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abeer-Al-Humaimeedy?enrichId=rgreq-88a596c2cd5136e52b0545067cfbb4bf-XXX&enrichSource=Y292ZXJQYWdlOzI2MTI4ODk2OTtBUzoyMTc1MDg1ODI4MjU5ODRAMTQyODg2OTQ5NTkwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Abeer-Al-Humaimeedy?enrichId=rgreq-88a596c2cd5136e52b0545067cfbb4bf-XXX&enrichSource=Y292ZXJQYWdlOzI2MTI4ODk2OTtBUzoyMTc1MDg1ODI4MjU5ODRAMTQyODg2OTQ5NTkwMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

B. Löwe, G. Winskel (Eds.):
Developments in Computational Models 2012 (DCM 2012)
EPTCS 143, 2014, pp. 3–16, doi:10.4204/EPTCS.143.1

© A. S. Al-Humaimeedy & M. Fernández
This work is licensed under the
Creative Commons Attribution License.

General dynamic recovery for compensating CSP

Abeer S. Al-Humaimeedy
Department of Informatics

King’s College London, United Kingdom

Department of Information Technology
King Saud University, Riyadh, Saudi Arabia

Abeer@ksu.edu.sa

Maribel Fernández
Department of Informatics

King’s College London, United Kingdom

Maribel.Fernandez@kcl.ac.uk

Compensation is a technique to roll-back a system to a consistent state in case of failure. Recovery
mechanisms for compensating calculi specify the order of execution of compensation sequences.
Dynamic recovery means that the order of execution is determined at runtime. In this paper, we define
an extension of Compensating CSP, called DEcCSP, with general dynamic recovery. We provide a
formal, operational semantics for the calculus, and illustrate its expressive power with a case study. In
contrast with previous versions of Compensating CSP, DEcCSP provides mechanisms to replace or
discard compensations at runtime. Additionally, we bring back to DEcCSP standard CSP operators
that are not available in other compensating CSP calculi, and introduce channel communication.

1 Introduction

Transactions are units of work comprising a set of interactions between entities to achieve a final out-
put [8]. The notion of a transaction is based on the idea of all-or-nothing, that is, none of the transaction’s
effects can take place until the whole transaction is committed.

Basically, there are two types of transactions:Atomic Transaction (AT)andLong Running Trans-
action (LRT)[8]. ATs prevent entities from updating system resources until the whole transaction is
committed. Checkpoints and resources’ key-locks are used to maintain systems in a safe state. LRTs re-
lax the previous condition and allow the entities to update resources. However, LRTs use compensations
to maintain systems in a safe state. Compensation is a technique to roll-back the system to a consistent
state in the case of failure.

LRTs are intensively used in complex systems where entitiesusually engage in transactions that
last for hours, days or even longer while resources cannot belocked for such a long time. As a result,
modelling languages for complex systems should be equippedwith techniques to implement LRTs.

Considering process calculi as modelling languages, compensation has emerged as a crucial need.
The fundamental idea behind compensating process calculi is to adapt the well-developed transaction
techniques from database theory to the theory of process calculi, by introducing primitives to model and
handle transactions. In essence, the key concepts introduced within process calculi are: scope, fault,
termination and compensation.Scopedefines the transaction boundaries. Issues to be consideredin
relation with scope are: the relation between transaction’s subprocesses and the fate of subtransactions
if the parent transaction terminates (if nested transactions are allowed). Subtransactions can be aborted
(i.e., terminated), discarded (i.e., deleted), or preserved (i.e., subtransactions are levelled up and continue
running).Fault represents an exception (internal fault) thrown by a process; fault handlers are procedures
that should be evaluated in such a case.Terminationis the state of a process which is either committed
or interrupted by other processes (external fault); termination handlers are procedures that should be
evaluated in such a case. Finally,compensationis the reverse behaviour of a process, to undo the effects

http://dx.doi.org/10.4204/EPTCS.143.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

4 General dynamic recovery for compensating CSP

of the normal execution in the case of a failure. Compensations are evaluated when the process needs
to roll-back. Issues to be considered when dealing with compensation are the installation of a new
compensation in the system, and the recovery mechanism which determines the evaluation order of the
compensations to recover the system to a consistent state after a failure.

Basically, compensation can be statically implemented in any process calculus by creating a new
process, which captures a fixed compensation scenario (planned in advance). Static compensation is fea-
sible in systems where the evaluation of processes is fixed. However, in complex systems where there are
interleaved, parallel and complex patterns of interactions, the compensation scenario heavily depends on
the execution order. Therefore, compensating process calculi have been proposed as a suitable solution
for modelling such complex systems. The fundamental idea ofsuch process calculi is introducing a new
type of processes calledcompensable processes.

A compensable process comprises two behaviours: theforward behaviourcorresponds to the normal
execution of the process, and thecompensation behaviourcorresponds to its reverse execution, which
will undo the effects of the normal execution in case of system failure. While the system is running, a
sorted compensation scenario (sorted according to the execution order) will be built incrementally from
individual reverse behaviours.

Compensation has been introduced in a range of process calculi, including CCS [19],π-calculus [14,
18, 13], CSP [4] and Sagas [3, 2]. These compensating processcalculi are either interaction-based or
flow-composition calculi [1]. Interaction-based calculi associate with each transaction explicit compen-
sation sequences, and new compensations are installed in the system as an update to the compensation
process by using explicit primitives like (inst⌊⌋) [13]. In flow-composition calculi the compensation
sequence is built as a composition of smaller compensable components. Attached to each subprocess is a
compensation component; when this subprocess is successfully terminated its compensation is composed
(sequentially or in parallel) to the compensation sequence. This is to undo the effects of this subprocess
in case of system failure.

We are interested in flow-composition calculi, where when a transaction fails, compensations are
activated in the order specified by the recovery mechanisms.We distinguish betweenstatic recovery,
which is the activation of a previously implemented compensation sequence, anddynamic recovery,
which is the activation of a dynamically generated compensation sequence (i.e., generated while the
system is running). In turn, dynamic recovery mechanisms can be classified as:parallel recovery, if
all compensations are executed in parallel;backward recovery, if parallel processes are compensated in
parallel and sequential processes are compensated in backward order; andgeneral dynamic recovery,
which is backward recovery with the option of replacing or discarding compensations at runtime [18, 12,
13].

Specifically, we focus on CSP as a modelling language for complex systems, because of its flexi-
ble communication patterns and because it provides simple reasoning mechanisms to verify significant
properties of models, such as good/bad traces, deadlock freedom and divergence.

Compensation has been introduced in CSP by Butler, Hoare, and Ferreira who defined compensating
CSP (cCSP) as a flow-composition calculus with a backward recovery mechanism [4]. cCSP has been
extended by Chen, Liu, and Wang in the Extended compensatingCSP (EcCSP), bringing back some
significant operators from the original CSP and developing atheory of refinement [6, 7].

In this paper we extend cCSP further by introducing primitives to facilitate general dynamic recovery.
We call the new calculus DEcCSP (Dynamic EcCSP). Improving the recovery mechanism from back-
ward recovery to general dynamic recovery allows compensations to be replaced or discarded after they
have been recorded. This is useful in many cases, such as: (i)The compensation process is unknown
at the start. (ii) The compensation process is subject to change while the process evolves. (iii) The

A. S. Al-Humaimeedy & M. Fernández 5

compensation’s logic is complex and spans several processes. We demonstrate some of these cases in
Section 5.

Additionally, DEcCSP extends EcCSP by including all the standard CSP operators, to facilitate the
specification of complex systems. DEcCSP provides a conditional (if-then-else), iteration (while-do),
prefixing operator, named processes and channels. Channelshave been used informally in extensions of
CSP [4, 5, 6, 7, 15]. We have extended the syntax of DEcCSP withprimitives for channel communication,
and adapted the semantics to allow processes to pass data (the latter is omitted due to lack of space).

The remainder of this paper is organised as follows: Section2 recalls cCSP. Section 3 provides
an operational semantics for EcCSP, which had so far only a denotational semantics. The operational
semantics for EcCSP is used as a basis for the design, in section 4, of the syntax and the operational
semantics of our calculus, DEcCSP. Section 5 illustrates its expressive power using a case study. Finally,
Section 6 concludes the paper and briefly discusses future directions.

2 Background: compensating CSP (cCSP)

In this section we recall the main concepts in cCSP [4], assuming the reader is familiar with CSP [16, 17].
The novelty in cCSP is the introduction of transaction processing features within the standard CSP

processes. cCSP categorises processes into two types: standard processes, which are a subset of standard
CSP processes, and compensable processes, where a standardprocess is attached to another standard
process to undo its effects. When a standard process terminates normally, it evolves to∅, which means
nothing to do; however, when a compensable process terminates normally then its compensation will be
preserved in case the transaction fails and the system needsto roll-back.

The syntax of cCSP is summarised in Figure 1. We describe below the main constructs.
The operator[] is used to identify transaction’s boundaries in cCSP. Transactions can be nested;

subtransactions should be aborted if the parent transaction is terminated. According to the semantics of
cCSP, transaction blocks cannot be interrupted. cCSP includes operators for handling the key concepts
of compensations presented in the introduction. To represent unsuccessful termination of a process, new
terminal signals (events) have been added to the calculus:(!) represents internal fault;(?) represents
yielding to external fault. In addition to these terminal events new primitive processes have been intro-
duced: THROW is a process that throws an exception then terminates; YIELD is a process that yields
to an external exception and terminates. A new operator⊲ has been added to implement fault handler
(named interrupt handler). Inp⊲q, q is the fault handler ofp. Compensable process can be defined in
the calculus as a pair of standard processes which are composed with the new operator÷. In p÷q, q is
the compensation handler ofp. The∅ primitive process is added to the syntax of cCSP to representa
process which does nothing. It is equal to STOP in the original CSP. cCSP processes can be composed
sequentially or in parallel. Parallel processes can synchronise on terminal events solely. Choice between
two processes is resolved by either of them performing an event.

We are now going to describe the operational semantics of these operators and primitive processes;
it is based on the semantics presented by Ripon and Butler [5], but we have adapted it to follow the
operational semantics of the standard CSP [16, 17]. Throughout what follows, the following notations
will be used. Standard processes will be referred to by usinglower case lettersp, q. Compensable
processes will be referred to by using double letterspp, qq. The setΣ is the universal set that contains
all the observable events in a system;a, b,... will be used to range over this set. The setΩ consists
of the terminal events{!,?,

√}; ω will be used to range over this set. We defineΣτ := Σ∪ {τ} and
ΣτΩ := Στ ∪Ω. Finally, capital lettersA, B,.. will denote sets of observable events.

6 General dynamic recovery for compensating CSP

(Standard Processes) (Compensable Processes)
p,q ::= a (Atomic process) pp,qq ::= p÷q (Compensation pair (CP))

|p�q (Choice operator) |pp�qq (Choice operator)
|p;q (Sequential composition) |pp;qq (Sequential composition)
|p ‖ q (Parallel composition) |pp‖ qq (Parallel composition)
|SKIP (Primitive process) |SKIPP (Primitive process)
|THROW (Primitive process) |THROWW (Primitive process)
|YIELD (Primitive process) |YIELDD (Primitive process)
|p⊲q (Interrupt handler)
|∅ (Primitive process)
|[pp] (Transaction block)

Figure 1: cCSP Syntax

The following arestandard processes: primitive processesare
SKIP

√
−→∅

,
THROW

!−→∅

, and

YIELD
ω−→∅

for ω ∈ {?,
√}. Fora∈ Σ, the following is processa:

a
a−→ SKIP

. If a,b∈ Σωτ , then

the following two processes are calledChoice:
p

a−→ p′

p�q
a−→ p′

and
q

b−→ q′

p�q
b−→ q′

. If a∈Στ andω ∈{!,?},

the following three processes are calledSequential Composition:
p

a−→ p′

p; q
a−→ p′ ; q

, p
√
−→ p′

p; q
τ−→ q

, and

p
ω−→∅

p; q
ω−→∅

. For a ∈ Στ andω ∈ {√,?}, the following three processes are calledInterrupt Handler:

p
a−→ p′

p ⊲ q
a−→ p′ ⊲ q

, p
!−→ p′

p ⊲ q
τ−→ q

, and
p

ω−→∅

p ⊲ q
ω−→∅

. We define the binary operation(ω ,ω ′) 7→ ω&ω ′

by the following table:

! ?
√

! ! ! !
? ! ? ?√

! ?
√

Then, for b,c ∈ Στ and ω ,ω ′ ∈ Ω, the following three processes are calledParallel Composition:

p
b−→ p′

p ‖ q
b−→ p′ ‖ q

,
q

c−→ q′

p ‖ q
c−→ p ‖ q′

, and
p

ω−→∅ q
ω ′
−→∅

p ‖ q
ω&ω ′
−→ ∅

. Finally, the following three pro-

cesses are calledTransaction block:
pp

a−→ pp′

[pp]
a−→ [pp′]

,
pp

!−→ p

[pp]
!−→ p

, and
pp

√
−→ p

[pp]
√
−→∅

. This finishes the

list of standard processes.

We now define thecompensable processes: For ω ∈ {!,?}, we call the following three processes

compensation pair:
p

a−→ p′

p÷ q
a−→ p′ ÷ q

,
p

√
−→∅

p÷ q
√
−→ q

, and
p

ω−→∅

p ÷ q
ω−→ SKIP

. Furthermore, forω ∈

{?,
√}, the following areprimitive processes: SKIPP= SKIP÷SKIP, THROWW= THROW÷SKIP,

YIELDD = YIELD ÷SKIP,
SKIPP

√
−→ SKIP

,
THROWW

!−→ SKIP
, and

YIELDD
ω−→ SKIP

.

A. S. Al-Humaimeedy & M. Fernández 7

(Standard Processes) (Compensable Processes)
p,q ::= . . . (cCSP syntax) pp,qq ::= . . . (cCSP syntax)

|p⊓q (Internal choice) |pp⊓qq (Internal choice)
|p ‖

A
q (Parallel composition) |pp‖

A
qq (Parallel composition)

|p\A (Hiding operator) |pp\A (Hiding operator)
|pJRK (Renaming operator) |ppJRK (Renaming operator)
|µ p. f (p) (Recursion) |µ pp. f f (pp) (Recursion)

|pp⊠qq (Speculative choice)

Figure 2: EcCSP Syntax

If ω ,ω ′ ∈ Ω and a,b ∈ Στ , we call the following processesChoice:
pp

a−→ pp′

pp�qq
a−→ pp′

,

qq
b−→ qq′

pp�qq
b−→ qq′

,
pp

ω−→ p

pp�qq
ω−→ p

, and
qq

ω ′
−→ q

pp�qq
ω ′
−→ q

. If a ∈ Στ and ω ∈ {!,?}, then the follow-

ing three processes are calledSequential Composition:
pp

a−→ pp′

pp; qq
a−→ pp′ ; qq

, pp
√
−→ p

pp; qq
τ−→ 〈qq, p〉

, and

pp
ω−→ p

pp; qq
ω−→ p

. For a∈ Στ andω ∈ Ω, the following two processes are calledthe auxiliary operator:

qq
a−→ qq′

〈qq, p〉 a−→ 〈qq′, p〉
and

qq
ω−→ q

〈qq, p〉 ω−→ q; p
. Finally, if b,c ∈ Στ and ω ,ω ′ ∈ Ω, then the following

three processes are calledParallel Composition:
pp

b−→ pp′

pp ‖ qq
b−→ pp′ ‖ qq

,
qq

c−→ qq′

pp ‖ qq
c−→ pp ‖ qq′

, and

pp
ω−→ p qq

ω ′
−→ q

pp ‖ qq
ω&ω ′
−→ p ‖ q

.

3 Extended cCSP (EcCSP)

Chen, Liu, and Wang extended cCSP, adapted its trace semantics and developed stable-failure semantics
and failure-divergence semantics for cCSP as in the standard CSP [6, 7]. They also brought back to the
syntax of cCSP the original CSP operators: hiding, renaming, non-deterministic choice and recursion. In
addition, they changed the parallel operator to be synchronous, and introduced speculative choice (⊠).
A preliminary semantics for speculative choice was presented in [4, 15], however, it was not included in
the original cCSP. The EcCSP syntax is summarised in Figure 2.

EcCSP was developed using denotational semantics in [6, 7] and no operational semantics was pro-
vided. Therefore, we developed an operational semantics for EcCSP based on the operational semantics
of cCSP and CSP. We below describe the new and the adaptive inference rules; cCSP rules which are
part of cCSP operational semantics and not listed here are adopted without modification.

The adaptive operators ofstandard processesare as follows: Atomic process semantics has been
adjusted to permit interruptions before or after performing its event. Therefore, fora∈ Σ, if a completed

processa is
a

a−→ SKIP
, then an interrupted processa is as follows:before event a:

a
?−→ STOP

,

after event a:
a

a−→ STOP
.

8 General dynamic recovery for compensating CSP

Choice, which can be deterministic or non-deterministic asin the standard CSP. Deterministic choice
is resolved by either of the processes performing an observable or terminal event as follows. Ifa,b ∈
Σω , then the following four processes are calledExternal (Deterministic) Choice:

p
a−→ p′

p�q
a−→ p′

,

q
b−→ q′

p�q
b−→ q′

, p
τ−→ p′

p�q
a−→ p′�q

, and
q

τ−→ q′

p�q
b−→ p�q′

.

On the other hand, non-deterministic choice is resolved by either of the processes performing the

silent event “τ” as follows:
p ⊓ q

a−→ p
, and

p⊓ q
τ−→ q

.

The parallel operator, which has been parameterised with a set of events. The purpose of this set
is to govern the synchronisation between participants. Thereby, every event in this set should be per-
formed simultaneously, other events can interleave in any order. If b,c ∈ Στ , andω ,ω ′ ∈ Ω, then the

following processes are defining the newParallel Composition: For b,c /∈ A,
p

b−→ p′

p ‖
A

q
b−→ p′ ‖

A
q

and

q
c−→ q′

p ‖
A

q
c−→ p ‖

A
q′

. Fora∈ A,
p

a−→ p′ q
a−→ q′

p ‖
A

q
b−→ p′ ‖

A
q

. If the binary operation(ω ,ω ′) 7→ ω&ω ′ as de-

fined in Section 2, then
p

ω−→ STOP q
ω ′
−→ STOP

p ‖ q
ω&ω ′
−→ STOP

. Transaction block semantics has been adjusted

to permit interruptions by adding the following rule:
pp

?−→ p

[pp]
?−→ p

.

The new operators ofstandard processesare as follows:Hiding, where a predefined set of events

turns to “τ” in the targeted process. Ifb /∈ (A ⊆ Σ), then
p

b−→ p′

p\A
b−→ p′ \A

, if a ∈ (A ⊆ Σ), then

p
a−→ p′

p\A
τ−→ p′ \A

, and finally if ω ∈ Ω, then
p

ω−→ STOP

p\A
ω−→ STOP

. Renaming, where the events of a pro-

cess (or a subset of them) are renamed according to a renamingrelation (in other words, ifR⊆ Σ × Σ
is a defined renaming relation which maps events in setA to the events in setB, then renaming process
p with R is mapping its events fromA to B). The following processes define theRenaming operator. If

(aRb), then
p

a−→ p′

pJRK
b−→ p′JRK

,
p

τ−→ p′

pJRK
τ−→ p′JRK

, and ifω ∈ Ω, then
p

ω−→ STOP

pJRK
ω−→ STOP

. Recursion, using

a fixed point operator as follows:
µ p. f (p)

τ−→ f [µ p. f (p)/p]
. Symmetrically, we update the choice and

parallel composition operators for compensable processesas we did for standard processes as following:
If ω ,ω ′ ∈ Ω anda,b ∈ Σ, the following six processes are calledExternal (Deterministic) Choice:

pp
a−→ pp′

pp�qq
a−→ pp′

,
qq

b−→ qq′

pp�qq
b−→ qq′

,
pp

ω−→ p

pp�qq
ω−→ p

,
qq

ω ′
−→ q

pp�qq
ω ′
−→ q

,
pp

ω−→ p

pp�qq
ω−→ p

,

and
qq

ω ′
−→ q

pp�qq
ω ′
−→ q

; furthermore, the following two processes are calledInternal (Non-deterministic)

Choice:
pp

τ−→ pp′

pp�qq
τ−→ pp′�qq

and
qq

τ−→ qq′

pp�qq
τ−→ pp�qq′

.

If b,c∈ Στ andω ,ω ′ ∈ Ω, then the following three processes are calledParallel Composition. For

A. S. Al-Humaimeedy & M. Fernández 9

b,c /∈ A,
pp

b−→ pp′

pp ‖
A

qq
b−→ pp′ ‖

A
qq

,
qq

c−→ qq′

pp ‖
A

qq
c−→ pp ‖

A
qq′

; for a∈ A,
pp

a−→ pp′ qq
a−→ qq′

pp ‖
A

qq
a−→ pp′ ‖

A
qq′

; and

finally, for ω ,ω ′ ∈ Ω,
pp

ω−→ p qq
ω ′
−→ q

pp ‖
A

qq
ω&ω ′
−→ p ‖

A
q

.

Additionally, we define a new processes to implement the new operators(Recursion, Hiding, and
Renaming)for compensable processes as we did for standard processes as following: Recursionis the

process
µ pp. f f (pp)

τ−→ f f [µ pp. f f (pp)/pp]
. Hiding are the following processes: Ifb /∈ (A ⊆ Σ),

then
pp

b−→ pp′

pp\A
b−→ pp′\A

, and if a ∈ (A ⊆ Σ), then
pp

a−→ pp′

pp\A
τ−→ pp′\A

, and finally if ω ∈ Ω, then

pp
ω−→ p

pp\A
ω−→ p\A

. Finally, Renamingare the following processes: If(aRb), then
pp

a−→ pp′

ppJRK
b−→ pp′JRK

,

pp
τ−→ pp′

ppJRK
τ−→ pp′JRK

, and ifω ∈ Ω, then
pp

ω−→ p

pJRK
ω−→ pJRK

.

We also define the following processes to implement theSpeculative choice. Speculative choicecan
be defined as if two processes run in parallel without synchronisation, then the choice is resolved when
one of them commits, and the other should immediately compensate. If both of them fail then the whole
choice will fail and the processes should compensate in parallel.

If a,b ∈ Σ and ω ∈ {!,?}, then the following six processes are calledSpeculative Choice:

pp
a−→ pp′

pp⊠ qq
a−→ pp′ ⊠ qq

,
qq

b−→ qq′

pp⊠ qq
b−→ pp⊠ qq′

,
pp

ω−→ p qq
ω ′
−→ q

pp⊠ qq
ω&ω ′
−→ 〈(ω&ω ′),(p ‖ q)〉

,

pp
√

−→ p qq
ω−→ q

pp⊠ qq
√
−→ 〈q, p〉

,
qq

√
−→ q pp

ω−→ p

pp⊠ qq
√
−→ 〈p,q〉

, and
pp

√
−→ p qq

√
−→ q

pp⊠ qq
√
−→ 〈q, p〉�〈p,q〉

. Fora∈ Στ andω ∈

Ω, the following two processes are calledthe auxiliary operator:
p

a−→ p′

〈p,q〉 a−→ 〈p′,q〉
and

p
ω−→ STOP

〈p,q〉 ω−→ q
.

4 Dynamic Extended cCSP (DEcCSP)

Improving the compensation recovery mechanism from backward recovery to general dynamic recovery
allows compensations not only to be recorded in the right order dynamically, but to be discarded or
replaced dynamically too. In this section we extend EcCSP toinclude primitives that facilitate general
dynamic recovery. The main idea is to use a free process variable instead of the reverse behaviour
process in compensation pairs. The variable will work as a place holder within the recovery sequence,
where the real content can be retrieved later at the start of the execution. This will give the designer the
ability to replace variable values whenever needed or discard them if they are no longer needed as long
as the compensation has not been activated yet. Compensation can be discarded by assigning SKIP to
the variable, where the SKIP process in fact equals to an empty compensation.

The use of a process variable to update compensations is inspired by the work of Guidi, Lanese,
Montesi, and Zavattaro to model fault handling in SOCK [10] (a service-oriented process calculus) [9].
This idea has also been applied to theπ-calculus [12, 13]. However, these calculi are interaction-based,
whereas DEcCSP is a flow-composition calculus. Because of this difference, we have followed a different

10 General dynamic recovery for compensating CSP

(Standard Processes) (Compensable Processes)
p,q ::= . . . (EcCSP syntax) pp,qq ::= . . . (EcCSP syntax)

| If b Then p Elseq (condition block) | If b Then pp Elseqq (condition block)
| whileb do p (Iteration block) | whileb do pp (Iteration block)
|N (Process name) |NN (Process name)
|a−→ p (Prefix operator) |p÷X (Variable CP)
|X := p (Variable assignment)

(Events)
a ::= Names | a?ℓ | a!e | a.e
Names::= name | name.Names

Figure 3: DEcCSP Syntax. Here,e is a standard integer expression,b is a standard Boolean expression,
andℓ is an integer variable.

strategy to update and discard compensations.
In addition to improving the recovery mechanism, we bring back the remainder of the CSP standard

operators. These include: conditional (if-then-else) anditeration (while-do) control blocks, prefixing
operator, and named processes. Although control blocks canbe simulated in CSP using the primitive
operators as Hoare shows [11], Hoare also argues in [11] thathaving a reasonably wide range of operators
is needed in practice.

We also introduce channels passing data: we extend the syntax with channel communication primi-
tives, and adapt the semantics to allow processes to pass data (due to lack of space we present only the
syntax of channels carrying data, and omit the operational semantics). Butler, Ripon, Chen, Liu, and
Wang do not include data in their calculi [4, 5, 6, 7]. Channels have been used informally in Ripon’s case
study [15].

The rest of this section will be devoted to presenting DEcCSP’s syntax and operational semantics in
sections 4.1 and 4.2 respectively.

4.1 DEcCSP syntax

The syntax of DEcCSP is given in Figure 3. DEcCSP extends EcCSP’s syntax with operators to facilitate
general dynamic recovery, as explained above. These operators include: (i) Assignment, to assign values
to process variables. (ii)Variable compensation pair, where a process variable will take the place of the
compensation in the usual compensation pair.

DEcCSP also includes the standard CSP operators:if-then-else, while-do, prefixing operator and
named processesN. Process names can be used to specify recursive processes. We also extend the EcCSP
syntax with the standard primitives of channel communications in CSP. We assume the communicated
data are integers or ordinary names.

Events in CSP can be classified intoordinary names(a single constant name describing an action
to be performed);compound names, which are built by composing ordinary names with other ordinary
names (e.g,a.b) or with an integer expression (e.g,a.4) to denote data that is passed without indicating
the direction; andchannels, where the composition operator (.) is replaced by one of (!,?) to indicate the
direction of communication via the channel: ifa is a channel, thena?ℓ denotes input on the variableℓ,
which will be recorded in the local store, anda!e denotes output of the value of the integer expressione.

The traditional input/output notations (?, !) coincide with the notations for terminal events (?, !) in-
troduced by Butler, Hoare, and Ferreira [4], however it willalways be clear from the context which one
is intended.

A. S. Al-Humaimeedy & M. Fernández 11

4.2 Operational semantics of DEcCSP

We present below the operational semantics of DEcCSP, basedon the operational semantics that we
developed for EcCSP in Section 3. To deal with variables, we introduce stores to keep track of the
different values of these variables. Stores are denoted byS, whereS is a collection of typed locations.
Variables will have a location in this store to hold its current value. The storeS is represented as a
functionS[ℓ 7→ ν] which associates to eachℓ a valueν . We denote the set of locations whereS is defined
by dom(S).

In our semantics, configurations contain two stores. The first one is a collection of integer locations,
and is called thelocal store. We useσ , σ ′,... to represent its different states. The second one is a
collection of process locations, and is called theglobal store. We useρ , ρ ′,... to represent its different
states. We writeρ(X) to denote the value of the process variableX in ρ . Configurations are written
((p,σ),ρ), or ((pp,σ),ρ).

The local store keeps track of the values of data variables inthe scope of the associated process. The
global store keeps track of the values of process variables in the full space of configurations. Therefore,
the state of the global store is only changed when a new process variable has been declared or if a process
variable is assigned a new value.

Below we present the semantics of the new extensions in DEcCSP, the rest of DEcCSP is similar to
EcCSP.

General Dynamic recoverycan be implemented in the calculus by using acompensation pair with
process variable. A compensation pair with process variable consists of a standard process as a forward
behaviour and a process variable as its compensation partner. The variable works as a place holder within
the recovery sequence, where the real content can be retrieved later.

A compensation pair with process variable will be denoted bypx, to distinguish it from the standard
one denoted bypp, that is, px = p ÷ X, wherep is a standard process representingpx’s forward be-
haviour, andX is a process variable which works as place holder forpx’s compensation behaviour. The
variableX should be fresh, i.e., not in the domain of the global store.

During the execution of the forward behaviourp, X’s value can be changed anywhere in the system.
If p terminates normally then the variableX will be recorded, andX still can be changed anywhere
in the system as long as the compensation sequence has not been activated. Ifp terminates abnor-
mally then so does the compensation pair, resulting in an empty compensation. This is formalised

by the following rules:
((p,σ),ρ) a−→ ((p′,σ ′),ρ)

((p ÷ X,σ),ρ) a−→ ((p′ ÷ X,σ ′),ρ)
,

((p,σ),ρ)
√
−→ ((STOP,σ),ρ)

((p ÷ X,σ),ρ)
√
−→ ((X,σ),ρ)

, and

((p,σ),ρ) ω−→ ((STOP,σ),ρ)

((p ÷ q,σ),ρ) ω−→ ((SKIP,σ),ρ)
for ω ∈ {!,?}. The value ofX can be replaced by assigning a new

value to it; to discard the compensation, we assign SKIP:
((X := p,σ),ρ) τ−→ ((SKIP,σ),ρ [X 7→ p])

.

The stored value of the process variableX will be retrieved if the associated transaction throws
an exception. If a transaction[((pp,σ),ρ)] throws an exception !, then the transaction block will be
ended, and the corresponding compensationp will be activated. Therefore, the values of every pro-
cess variable should be retrieved by replacing it with its value in the global store. Ifρ(X) = p then

((X,σ),ρ) τ−→ ((p,σ),ρ)
Control Blocks. If-then-elseandwhile-doare the same as the standard control blocks, whereb in

the two control blocks is a Boolean expression which is evaluated according to the standard Boolean

12 General dynamic recovery for compensating CSP

semantics. The following three processes are defining theCondition Blockfor standard processes:
((b,σ),ρ) τ−→ ((b′,σ ′),ρ)

((If b Thenp Elseq,σ),ρ) τ−→ ((If b′ Thenp Elseq,σ ′),ρ)
,

((If True Thenp Elseq,σ),ρ) τ−→ ((p,σ),ρ)
,

and
((If False Thenp Elseq,σ),ρ) τ−→ ((q,σ),ρ)

. The following three processes are defining theCondi-

tion Blockfor compensable processes:
((b,σ),ρ) τ−→ ((b′,σ ′),ρ)

((If b ThenppElse qq,σ),ρ) τ−→ ((If b′ ThenppElseqq,σ ′),ρ)
,

((If True ThenppElseqq,σ),ρ) τ−→ ((pp,σ),ρ)
, and

((If False ThenppElseqq,σ),ρ) τ−→ ((qq,σ),ρ)
.

Finally, Iteration Blockin standard and compensable processes can be defined as follows:

((While b Do p,σ),ρ) τ−→ ((If b Then(p;While b Do p) Else SKIP,σ),ρ)
and

((While b Do pp,σ),ρ) τ−→ ((If b Then(pp;While b Do pp) Else SKIP,σ),ρ)
.

Named Processes for Definitions and Recursion. We write (N = p) if N is the name of the standard
processp, and (NN = pp) if NN is the name of the compensable processpp. Process names can
be used in the more common style of recursion where the process name is used in the process body.

This can be defined as following: IfN = p then
((N,σ),ρ) τ−→ ((p,σ),ρ)

, and if NN = pp then

((NN,σ),ρ) τ−→ ((pp,σ),ρ)
.

Prefixing. Let a be an event∈ Σ∩α p (αP is the set of events that the process can perform), and letp
be a process. Prefixing represents a standard process which is ready to engage in eventa and then behave

asp,
(((a−→ p,σ),ρ) a−→ ((p,σ),ρ))

.

The prefix operator can be used to link critical events, whichshould be executed in sequence without
interruption. Prefixing differs from sequencing, as the following example shows.

According to DEcCSP’s syntax (P = a −→ b −→ SKIP) and (Q = a;b;SKIP) are valid processes.
However,Q can be interrupted whereasP can not. To be more clear the two process will be composed
in parallel with THROW as follows:P‖

φ
Q‖

φ
THROW

If THROW has been performed beforeP or Q, then the two processes can be interrupted. If THROW
has happened after, e.g., the first event (a), thenQ will be prohibited from continuing execution whileP
will not. This is due to the successful terminal event aftera in Q. This terminal event will synchronise
with the terminal event ! in THROW resulting in ! which terminates the parallel operator. Such terminal
event does not exist inP therefore the process will continue its execution.

5 Case study

To illustrate the new features of DEcCSP, in this section we develop a case study based on the one
described in [5]. We first demonstrate the basic extensions to cCSP, namely channels passing integers
and control blocks. Then, the case study is extended to emphasise the general dynamic recovery.

A. S. Al-Humaimeedy & M. Fernández 13

Customers can order products from a warehouse. A customer should provide an item number, the
quantity and his membership number (0 will be sent if the customer is not a member). If the order is
accepted then proceed to fulfill this order and subtract the quantity from the inventory. If this action
completed but later the transaction fails then the deductedquantity should be returned to the inventory.
TheFulfillOrder process starts by booking a courier which should be compensated if the transaction
fails by cancelling the courier. If the customer is a member of this warehouse then no fee is charged,
otherwise fees should be paid as part of the compensation process for booking the courier.BookCourier
runs in parallel with packing the order, where each item ordered is packed, if there is an error then the
item should be unpacked. At the same time, the customer’s credit card is charged with the amount
needed. This is done at the same time because it usually succeeds. However, if the credit process fails
then the whole transaction fails and the system should be compensated.

This ordering system runs in parallel with theCustomer process which issues an order or applies
for a membership, and aBank process which validates the credit card. In the following, we use‖ with
no parameters to mean that the participant processes synchronise on the terminal events solely, and‖i=y

i=0
is an indexed version of the parallel operator between several processes.

System = ((OrderTransaction ‖
B

Bank) ‖
A

(Customer ‖
C

CustomerService))

Where A={Order.x.y.ns }, B={CreditCheck.N, Ok, NotOk} and

C={RequestMembership, MembershipNumber.ns }
OrderTransaction = [ProcessOrder]

ProcessOrder = ((Order?x?y?ns; deduct.x.y) ÷ Restock.x.y) ;

FulfillOrder

FulfillOrder = BookCourier ÷ (If ns=0 Then cancelcourier1 Else

cancelcourier) ‖ (‖i=y

i=0 (Pack.x ÷ Unpack.x)) ‖ ((CreditCheck!N ;

(Ok � (NotOk ; THROW)))÷ SKIP)

cancelcourier1 = cancelcourier ; penalty

Customer= (Order!x!y!ns ; Customer) ⊓ ((RequestMembership; payfee;

MembershipNumber?ns) ; Customer)

CustomerService=RequestMembership;createprofile;MembershipNumber!ns;

CustomerService

Bank = CreditCheck?N ; (Ok ; Bank) ⊓ (NotOk ; Bank)

The system will be started by the customer process either executing Order!x!y!ns, wherex, y
andnsare integers, orRequestMembership. Order!x!y!ns starts a new transaction to process the
order, that is, deduct the quantity from the inventory then proceed toFulfillOrder, which consists of
three parallel subprocesses. Due to the parallel operator in this process its execution may have different
possibilities. Assume the following scenario: a courier has been booked then three items of the product
have been packed before the system checks the credit card. While the system is waiting for the bank to
return the answer, a fourth item has been packed.

This scenario will lead us to the choice:(Ok � (NotOk ; THROW)). If the bank answeredOk
then the transaction continues, however, if the bank answeredNotOk the current transaction terminates
abnormally causing the associated compensations to start.The current compensations are:

Unpack.x ‖ Unpack.x ‖ Unpack.x ‖ Unpack.x ‖ (If ns=0 Then

cancelcourier1 Else cancelcourier); restock.x.y.

14 General dynamic recovery for compensating CSP

Alternatively, applying for a membership will be started byRequestMembershipwhich is followed
by a series of actions to process the application and is finished by the eventMembershipNumber.ns
which will send the membership number for the customer who issuedRequestMembership.

The If statement provides the designer with the ability to delay resolving the choice of which com-
pensation to start until compensation evaluation. However, the If statement is not sufficient for all cases,
e.g, consider the following case.

This system assumes that items are always available in the warehouse. If we extend this system by
removing this assumption, then items may not be available inthe inventory. In this case, the warehouse
should order the unavailable items from its two branches starting by the first one because it is nearer. If
both branches fail to satisfy the order then the whole transaction fails.

To design this we add to the system aPrepareOrder process which checks if the item is available
or not, if not then it orders the item from the two branches in sequence.

We now replace the compensation inProcessOrder with a variableX, because the compensation
is not known at the start; it depends on thePrepareOrder process.

OrderTransaction = [ProcessOrder ‖
D

(PrepareOrder ‖
F

(Branch1 ‖
∅

Branch2))]

Where

D={Inventory.x.y, InvOK} and F={okbranch1,okbranch2,nobranch1,nobranch2}
ProcessOrder = ((Order?x?y?ns; X:= SKIP; Inventory!x!y; InvOK;

deduct.x.y) ÷ X); FulfillOrder

PrepareOrder= (Inventory?x?y; ((Available; X:=restock.x.y; InvOK) �

(NotAvailable; branch1!x!y; ((okbranch1;X:=(restock.x.y;Cancelbranch1);

InvOK) � (nobranch1; branch2!x!y; ((okbranch2; X:=(restock.x.y;

Cancelbranch2);InvOK) � (nobranch2; THROW))))) ÷ SKIP

Branch1= (branch1?x?y; (okbranch1 ⊓ nobranch1); Branch1) ÷ SKIP

Branch2= (branch2?x?y; (okbranch2 ⊓ nobranch2); Branch2) ÷ SKIP

The compensation sequence of the above process is:

Unpack.x ‖ Unpack.x ‖ Unpack.x ‖ Unpack.x ‖ (If ns=0 Then

cancelcourier1

Else cancelcourier); X.

At the start,X is initialised with SKIP. The eventInvOK is used to ensure that the deduction will not
happen unless the order has been fulfilled.

6 Conclusions and future work

General dynamic recovery allows compensations to be replaced or discarded in the compensation se-
quence. This is useful in cases where compensations are not known from the beginning or if they are
subject to change while the system is running. DEcCSP is a compensating calculus developed as an
extension of EcCSP, improving the recovery mechanism (frombackward recovery to general dynamic
recovery) and including all of the CSP standard operators.

We have developed an operational semantics for DEcCSP. A denotational semantics for the three
behavioural models of the standard CSP, as well as a theory ofrefinement, is left for future work. We
also plan to extend the functionality of DEcCSP by introducing mobility.

A. S. Al-Humaimeedy & M. Fernández 15

References

[1] Roberto Bruni, Michael J. Butler, Carla Ferreira, C. A. R. Hoare, Hernán C. Melgratti & Ugo Montanari
(2005):Comparing Two Approaches to Compensable Flow Composition. In Martı́n Abadi & Luca de Alfaro,
editors: CONCUR 2005, Concurrency Theory, 16th International Conference, CONCUR 2005, San Fran-
cisco, CA, USA, August 23-26, 2005, Proceedings, Lecture Notes in Computer Science3653, Springer, pp.
383–397, doi:10.1007/11539452_30.

[2] Roberto Bruni, Anne Kersten, Ivan Lanese & Giorgio Spagnolo (2012): A New Strategy for Distributed
Compensations with Interruption in Long-Running Transactions. In Till Mossakowski & Hans-Jörg Kre-
owski, editors:Recent Trends in Algebraic Development Techniques, 20th International Workshop, WADT
2010, Etelsen, Germany, July 1-4, 2010, Revised Selected Papers, Lecture Notes in Computer Science7137,
Springer, pp. 42–60, doi:10.1007/978-3-642-28412-0_5.

[3] Roberto Bruni, Hernán C. Melgratti & Ugo Montanari (2005): Theoretical foundations for compensations
in flow composition languages. In Jens Palsberg & Martı́n Abadi, editors:Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long Beach, Cali-
fornia, USA, January 12-14, 2005, ACM, pp. 209–220, doi:10.1145/1040305.1040323.

[4] Michael J. Butler, C. A. R. Hoare & Carla Ferreira (2005):A Trace Semantics for Long-Running Transac-
tions. In Ali E. Abdallah, Cliff B. Jones & Jeff W. Sanders, editors: Communicating Sequential Processes:
The First 25 Years, Symposium on the Occasion of 25 Years of CSP, London, UK, July 7-8, 2004, Revised
Invited Papers, Lecture Notes in Computer Science3525, Springer, pp. 133–150, doi:10.1007/11423348_

8.

[5] Michael J. Butler & Shamim Ripon (2005):Executable Semantics for Compensating CSP. In Mario Bravetti,
Leı̈la Kloul & Gianluigi Zavattaro, editors:Formal Techniques for Computer Systems and Business Pro-
cesses, European Performance Engineering Workshop, EPEW 2005 and International Workshop on Web
Services and Formal Methods, WS-FM 2005, Versailles, France, September 1-3, 2005, Proceedings, Lecture
Notes in Computer Science3670, Springer, pp. 243–256, doi:10.1007/11549970_18.

[6] Zhenbang Chen & Zhiming Liu (2010):An Extended cCSP with Stable Failures Semantics. In Ana Cav-
alcanti, David Déharbe, Marie-Claude Gaudel & Jim Woodcock, editors: Theoretical Aspects of Com-
puting, ICTAC 2010, 7th International Colloquium, Natal, Rio Grande do Norte, Brazil, September 1-
3, 2010. Proceedings, Lecture Notes in Computer Science6255, Springer, pp. 121–136, doi:10.1007/

978-3-642-14808-8_9.

[7] Zhenbang Chen, Zhiming Liu & Ji Wang (2011):Failure-Divergence Refinement of Compensating Com-
municating Processes. In Michael Butler & Wolfram Schulte, editors:FM 2011: Formal Methods, 17th
International Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings, Lecture
Notes in Computer Science6664, Springer, pp. 262–277, doi:10.1007/978-3-642-21437-0_21.

[8] Jim Gray & Andreas Reuter (1993):Transaction Processing: Concepts and Techniques. Morgan Kaufmann.

[9] Claudio Guidi, Ivan Lanese, Fabrizio Montesi & Gianluigi Zavattaro (2008):On the interplay between fault
handling and request-response service invocations. In Jonathan Billington, Zhenhua Duan & Maciej Koutny,
editors:8th International Conference on Application of Concurrency to System Design (ACSD 2008), Xi’an,
China, June 23-27, 2008, IEEE, pp. 190–198, doi:10.1109/ACSD.2008.4574611.

[10] Claudio Guidi, Roberto Lucchi, Roberto Gorrieri, Nadia Busi & Gianluigi Zavattaro (2006):SOCK: A Cal-
culus for Service Oriented Computing. In Asit Dan & Winfried Lamersdorf, editors:Service-Oriented Com-
puting, ICSOC 2006, 4th International Conference, Chicago, IL, USA, December 4-7, 2006, Proceedings,
Lecture Notes in Computer Science4294, Springer, pp. 327–338, doi:10.1007/11948148_27.

[11] C. A. R. Hoare (1985):Communicating Sequential Processes. Prentice-Hall.

[12] Ivan Lanese, Cátia Vaz & Carla Ferreira (2010):On the Expressive Power of Primitives for Compensation
Handling. In Andrew D. Gordon, editor:Programming Languages and Systems, 19th European Sympo-
sium on Programming, ESOP 2010, Held as Part of the Joint European Conferences on Theory and Practice

http://dx.doi.org/10.1007/11539452_30
http://dx.doi.org/10.1007/978-3-642-28412-0_5
http://dx.doi.org/10.1145/1040305.1040323
http://dx.doi.org/10.1007/11423348_8
http://dx.doi.org/10.1007/11423348_8
http://dx.doi.org/10.1007/11549970_18
http://dx.doi.org/10.1007/978-3-642-14808-8_9
http://dx.doi.org/10.1007/978-3-642-14808-8_9
http://dx.doi.org/10.1007/978-3-642-21437-0_21
http://dx.doi.org/10.1109/ACSD.2008.4574611
http://dx.doi.org/10.1007/11948148_27

16 General dynamic recovery for compensating CSP

of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.Proceedings, Lecture Notes in Computer
Science6012, Springer, pp. 366–386, doi:10.1007/978-3-642-11957-6_20.

[13] Ivan Lanese, Cátia Vaz & Carla Ferreira (2011):On the Expressive Power of Primitives for Compensation
Handling. Journal version of [12], submitted.

[14] Cosimo Laneve & Gianluigi Zavattaro (2005):Foundations of Web Transactions. In Vladimiro Sassone,
editor: Foundations of Software Science and Computational Structures, 8th International Conference, FOS-
SACS 2005, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2005, Edinburgh, UK, April 4-8, 2005, Lecture Notes in Computer Science3441, Springer, pp. 282–298,
doi:10.1007/978-3-540-31982-5_18.

[15] Shamim Ripon (2008):Extending and Relating Semantic Models of Compensating CSP. Ph.D. thesis, Uni-
versity of Southampton. Available athttp://eprints.soton.ac.uk/266584/.

[16] A. W. Roscoe (1998):The theory and practice of concurrency. Prentice Hall. Available athttp://www.cs.
ox.ac.uk/people/bill.roscoe/publications/68b.pdf.

[17] A.W. Roscoe (2010):Understanding Concurrent Systems. Texts in Computer Science, Springer, doi:10.

1007/978-1-84882-258-0.

[18] Cátia Vaz, Carla Ferreira & António Ravara (2009):Dynamic Recovering of Long Running Transactions.
In Christos Kaklamanis & Flemming Nielson, editors:Trustworthy Global Computing, 4th International
Symposium, TGC 2008, Barcelona, Spain, November 3-4, 2008,Revised Selected Papers, Lecture Notes in
Computer Science5474, Springer, pp. 201–215, doi:10.1007/978-3-642-00945-7_13.

[19] Edsko de Vries, Vasileios Koutavas & Matthew Hennessy (2010):Communicating Transactions – (Extended
Abstract). In Paul Gastin & François Laroussinie, editors:CONCUR 2010, Concurrency Theory, 21th In-
ternational Conference, CONCUR 2010, Paris, France, August 31-September 3, 2010. Proceedings, Lecture
Notes in Computer Science6269, Springer, pp. 569–583, doi:10.1007/978-3-642-15375-4_39.

View publication stats

http://dx.doi.org/10.1007/978-3-642-11957-6_20
http://dx.doi.org/10.1007/978-3-540-31982-5_18
http://eprints.soton.ac.uk/266584/
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1007/978-3-642-00945-7_13
http://dx.doi.org/10.1007/978-3-642-15375-4_39
https://www.researchgate.net/publication/261288969

	1 Introduction
	2 Background: compensating CSP (cCSP)
	3 Extended cCSP (EcCSP)
	4 Dynamic Extended cCSP (DEcCSP)
	4.1 DEcCSP syntax
	4.2 Operational semantics of DEcCSP

	5 Case study
	6 Conclusions and future work

