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Enabling Synchronous and Asynchronous
Communications in CSP for SOC

Abeer S. Al-Humaimeedy†,‡ 1 Maribel Fernández †2

†Department of Informatics, King’s College London, UK
‡Department of Information Technology, King Saud University, Saudi Arabia

Abstract

Service Oriented Computing (SOC) is based on service composition, that is, loosely coupled autonomous
heterogeneous services, which are collectively composed to implement a particular task. We develop a
new calculus for SOC within the framework of CSP process algebra, aiming to improve the verification
techniques and to enhance the expressiveness of SOC calculi. This paper presents the part of the calculus
that extends CSP with built-in buffers to facilitate direct asynchronous communications. We provide the
operational semantics of the calculus and extend the FDR (a CSP model checker) by implementing functions
for asynchronous communications.

Keywords: asynchrony, CSP, asynchronous calculi, buffers, SOC calculi.

1 Introduction

The Service Oriented Computing (SOC) paradigm, which is based on service compo-

sition, has been successfully applied to facilitate systems integration in distributed

environments. Service composition refers to an aggregate of loosely coupled au-

tonomous heterogeneous services, which are collectively composed to implement a

particular task.

In the SOC paradigm, services can communicate using messages solely, where

messages can be sent synchronously or asynchronously. In the web services (WS)

standards [18,25], messages are sent according to predefined interaction patterns [9].

These interaction patterns include the request-response pattern and the solicit-

response pattern, which represent synchronous communication. In synchronous

communication, the initiator of the message suspends processing until it receives

a response. On the other hand, the one-way and notification patterns represent
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asynchronous communication, where the initiator of the message continues running

the next coded statement, without suspending processing.

Process calculi, such as SCC [5] and CaSPiS [6], provide a formal specification of

interaction patterns with synchronous communications, allowing designers to reason

about the correctness of SOC systems. Other formal systems, such as COWS [16]

and Conversation Calculus [24], consider only asynchronous communications, since

synchronous communications in the internet standards are usually implemented by

network protocols such as TCP/IP [12], which are by default asynchronous. To the

best of our knowledge, none of the formal calculi developed for SOC supports both

synchronous and asynchronous communications.

In this paper, we propose a new process calculus, called CSPa, that supports

mixed synchronous and asynchronous communications. Our calculus can be de-

scribed as a buffered version of Hoare’s CSP [13]. CSP has been chosen as the

foundation for our calculus because its communication model supports mixed syn-

chronous/interleaving communications. In CSP, all processes participating in a

parallel composition synchronise on a predefined set of events. For instance, let

p, q, r be CSP processes, then in the parallel composition (p ‖{|a,b|} q ‖{|a,b|} r), the
processes p, q, and r synchronise on events a, b only, the rest of the events are eval-

uated independently. This version of the parallel composition is called generalised

parallel composition. In CSP, the parallel composition has another version, called

alphabetised parallel composition [20] and written p αp‖αq q, where participants syn-
chronise in all shared events. However, the alphabetised parallel composition can

be encoded in the generalised parallel composition by setting the interface set to be

(αp ∩ αq). Here, αp denotes p’s alphabet which is the set of events that process p

can perform. In this paper, we consider the generalised parallel composition only.

Therefore, from now on when we write parallel composition we mean the generalised

parallel composition.

The novelty in CSPa is the introduction of implicit buffers, which are used in

the channel semantics to facilitate asynchronous communications in a transparent

way. In other words, CSPa includes asynchronous communication primitives, which

rely on buffers, but designers do not need to create, maintain or terminate buffers.

We provide an operational semantics that explains how buffers work.

Additionally, we study the relationship between our calculus and CSP, and we

encode our calculus in the original CSP. Although the new constructs in CSPa do

not enhance the expressiveness of CSP in the sense that the new constructs can be

encoded in CSP, CSPa simplifies reasoning by replacing the encoding transitions by

one transition.

In previous work, we extended CSP with primitives to model dynamic com-

pensations [1]. Here we focus on communication primitives solely: we enhance

CSP by allowing asynchronous communications in addition to its standard mixed

synchronous/interleaving communications. More precisely, we extend the parallel

composition operator in order to permit mixed synchronous, interleaving and asyn-

chronous communications. In future work, we plan to include also primitives to

create and maintain sessions and to model mobility, to obtain an expressive calcu-
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lus for SOC modelling.

We observe that although SOC calculi are equipped with formal semantics, which

enables formal verification of properties, a feature not available in the WS stan-

dards, these standards are still the dominant modelling languages. In our view,

this is mostly because formal methods are often perceived as hard to apply. To

facilitate the practical use of our calculus we have encoded CSPa in the CSP model

checker (FDR [11]). FDR implements the mathematical machinery and the theory

of refinement that Hoare built for reasoning on the external behaviour of systems.

It provides simple proof techniques to assert the conformance between specification

and implementation, deadlock-freedom, and divergence-freedom, in addition to de-

terminism and bisimulations (we illustrate some of these features in the example

in Section 6). Other model checkers, such as SPIN [14], which accepts models in

Promela, or Maude [2], could be used if these checks are implemented. In the model

checker PAT [23] the refinement checks are implemented, but we choose FDR be-

cause CSP# (the input language of PAT) does not support the generalised parallel

composition operator which we extend in this paper.

Paper overview: Section 2 recalls some basic CSP notions. Section 3 introduces

CSPa. Section 4 discusses the relationship between CSP and CSPa. Section 5

presents the implementation of CSPa in FDR. Section 6 illustrates the usability of

this extension with an example. Section 7 discusses related work. Finally, Section 8

concludes and discusses future directions.

2 Preliminaries

We assume that the reader is familiar with the core theory of CSP. Below we briefly

recall its syntax and operational semantics. For more details we refer the reader

to [20]; our notation is drawn largely from it.

In the rest of the paper, the following notations are used: p, q, . . . denote pro-

cesses; Σ is the universal set that contains all the observable events in a system; a, b

are used to range over this set. Στ (resp., Σ
√
) is the universal set Σ and in addition

the silent event τ (resp., the termination event
√
). Στ

√
is the set Σ∪{τ,√}. Cap-

ital letters A,B denote sets of observable events; s denotes lists, and 〈x〉 denotes a
list which has the element x.

CSP processes are defined by the following grammar.

p, q ::= a → p | p�q | p⊓q | p‖Aq | p; q | p\A | p�R� | μp.f(p) | p|||q | SKIP | STOP

where a can be the name of an atomic action, inputting through channel a (written

as a?x), outputting through channel a (written as a!x), or a combination of them

(e.g. a!x?y). The interleaving (|||) and the parallel composition (‖A) operators have
indexed versions written as |||Ni=1 and ‖

A

N

i=1

respectively.

The operational semantics is given in Figure 1, where
a−→,

a.x−→,
τ−→,

√
−→ denote a

labelled transition relation. Here, a represents an atomic action, and a.x represents

inputting or outputting through channel a where x can be variable or data; both a
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and a.x are considered events in Σ. STOP is the process which does nothing. SKIP

is the process that immediately terminates successfully. Prefixing (a → p) is the

process which is ready to engage in event a and then behave as p. External choice

(p�q) is resolved by the environment offering the first action of p or q. Internal

choice (p ⊓ q) is resolved internally; thus, either alternative can be available after

an internal action τ . Recursive functions (μp.f(p)) are defined using an explicit

fixed point notation, where f(p) is a CSP term involving process p, and μp.f(p)

defines exactly the same process as p = f(p). The law of recursion here is that the

recursively defined process μp.f(p) satisfies the equation defining it, i.e., μp.f(p) =

f [μp.f(p)/p] (details of the fixed point recursion in CSP can be found in [20]). In

Hiding (p\a), action a is hidden in process p that is the external environment can

not observe it. If R is a relation which maps events in set A to the events in set B,

then Renaming (p�R�) is mapping events from A to B in process p. In Sequential

Composition (p; q) q is executed if p terminates successfully. In Parallel Composition

(p‖Aq) p and q are executed in parallel and synchronise on events in A only; events

not in A are interleaved. The Parallel Composition does not require processes to

synchronise on the terminal event
√
. Therefore, if p or q are ready to terminate

successfully, i.e. evaluating the event
√
, then the process can terminate and then the

parallel composition will evolve to an intermediate state called Ω until both of the

processes terminate then the parallel composition will terminate successfully; this

is called distributed termination. In Interleaving (p|||q) the events from processes

p, q can be performed in any order.

Apart from the prefix operator where different rules are provided for a and a.x,

the a event in Figure 1 rules can be a or a.x where x is a variable or a value. In

rule (par3), since the whole a.x is an event, a.x can only be synchronised with a.y

if the values of x and y are equal or if one or both of them are input variables.

In this paper, we assume that standard functions on lists and conditional if-

then-else are available and executed as τ transitions.

We recall below the definitions of the weak transition [21], bisimilarity [21], and

similarity [17] relations.

Definition 2.1 [Weak transition]

(i) =⇒ is the reflexive and transitive closure of
τ−→ (i.e. =⇒ is

τ−→∗
). Thus,

p =⇒ p′expresses that p can evolve to p′ by performing zero or more internal

actions.

(ii)
a

=⇒ is =⇒ a−→=⇒, for a ∈ Σ. Thus, p
a

=⇒ p′expresses that p can evolve to p′

by performing the visible action a with any number, possibly zero, of internal

actions before and after a.

(iii) =⇒∗ denotes a sequence of 0 or more steps using =⇒ or
a

=⇒.

Definition 2.2 [Bisimilarity] The bisimilarity relation, denoted by ≈, is the largest

symmetric relation such that whenever p ≈ q, then:

(i) If p
a−→ p′, then q

a
=⇒ q′ and p′ ≈ q′.

A.S. Al-Humaimeedy, M. Fernández / Electronic Notes in Theoretical Computer Science 312 (2015) 69–8872



(skip)
SKIP

√
−→STOP

(prefix)
(a→p)

a−→p
a ∈ Σ

(prefix-out)
(a!x→p)

a.x−→p
a.x ∈ Σ (prefix-in)

(a?x→p)
a.v−→p[v/x]

a.v ∈ Σ

(exch1,2) p
a−→p′

p� q
a−→p′

q
b−→q′

p� q
b−→q′

(a, b ∈ Σ
√
) (exch3,4) p

τ−→p′

p� q
τ−→p′ � q

q
τ−→q′

p� q
τ−→p� q′

(inch1,2)
p⊓ q

τ−→p p⊓ q
τ−→q

(rec)
μp.f(p)

τ−→f [μp.f(p)/p]

(hid1,2,3) p
a−→p′

p \A a−→p′ \A
(a /∈ A) p

a−→p′

p \A τ−→p′ \A
(a ∈ A) p

√
−→STOP

p \A
√
−→STOP

(rem1,2,3) p
a−→p′

p�R�
b−→p′�R�

(aR b) p
τ−→p′

p�R�
τ−→p′�R�

p
√
−→STOP

p�R�
√
−→STOP

(seq1,2) p
a−→p′

p ; q
a−→p′ ; q

(a ∈ Στ ) p
√
−→p′

p ; q
τ−→q

(intv1,2) p
a−→p′

p ||| q a−→p′ ||| q
q

a−→q′

p ||| q a−→p ||| q′
(a ∈ Στ

√
)

(par1,2,3) p
a−→p′

p ‖A q
a−→p′ ‖A q

q
a−→q′

p ‖A q
a−→p ‖A q′

(a /∈ A) p
a−→p′ q

a−→q′

p ‖A q
a−→p′ ‖A q′

(a ∈ A)

(parT1,2,3) p
√
−→STOP

p ‖A q
τ−→Ω ‖A q

q
√
−→STOP

p ‖A q
τ−→p ‖A Ω Ω ‖A Ω

√
−→STOP

Figure 1. CSP’s operational semantics

(ii) If p
τ−→ p′, then q =⇒ q′ and p′ ≈ q′.

We say two processes p and q are bisimilar if p ≈ q.

Definition 2.3 [Similarity] The similarity relation, denoted by , is the largest

relation such that whenever p  q, then:

(i) If p
a−→ p′, then ∃q′. q a

=⇒ q′ and p′  q′.

(ii) If p
τ−→ p′, then ∃q′. q =⇒ q′ and p′  q′.

We say that process q simulates process p if p  q.

3 Mixed Synchronous/Asynchronous Communications
in CSPa

In CSP, the parallel composition operator does not force events to be synchronised.

Instead, it is parameterised by an interface set, which governs the synchronisation

between participants. Events inside the interface set should be simultaneously eval-

uated, whereas events outside the set can be evaluated independently even if they

are shared. Evaluating events independently does not pass channels’ data from in-

putting to outputting processes. If designers want asynchronicity (i.e., data to be

transmitted with delay), they need to define and maintain an explicit buffer. To

avoid this burden, we include built-in buffers in CSPa, associated with events in Σ,

and extend the semantics of CSP to model asynchronous communications. In this

way, asynchronicity becomes a primitive notion in the calculus, at the same level as

synchronicity, and designers do not need to deal with the implementation details of

creating and maintaining buffers.

To implement this solution, we extend CSP’s channel syntax with two events:

a!<x, which denotes adding data x as the last element in a’s buffer (Ba), and
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a?>x, which denotes the consumption of the first element in a’s buffer (Ba). We

also extend the transition relation as follows: The prefix a?>x in a process indicates

that this process is ready to accept any value of a’s type (i.e the type of data that

channel a can accept). This input transition rule is similar to CSP’s input rule

except that the label here is a←.v instead of a.v. The a←.x label can be read as

input x into channel a (inputting into a channel means outputting from the buffers).

(asy-in)
a?>x → p

a←.v−→ p[v/x]

If the event a!<x is used within a process, then this process is ready to send x. Here

x can be a value or a variable of a’s type. This output transition rule is similar to

CSP’s output rule except that the label here is a→.x instead of a.x. The a→.x can

be read as output the value x from channel a (outputting from a channel means

inputting into the buffers).

(asy-out)
a!<x → p

a→.x−→ p

The symbols > and < in these events denote a communication with Ba, where

Ba denotes the built-in buffer for channel a. Ba appears in the semantics but it is

transparent for designers. Ba is formally defined as follows:

Definition 3.1 [Event Buffer] For each a ∈ Σ, an unbounded buffer Ba with FIFO

(first come first out) policy is defined as a process parameterised by a list s, as

indicated below. We write Ba(〈〉) to represent an empty buffer, Ba(〈x〉�s) represents
a buffer containing an element x followed by the elements in s. The operator �

represents list concatenation.

Ba(s) = if null(s)

then (a?<x → Ba(〈x〉))�SKIP

else (a!>head(s) → Ba(tail(s)) � a?<x → Ba(s
�〈x〉))

� SKIP

where null(s), head(s), and tail(s) are standard functions on lists, which check if a

list is empty, retrieve the first element in a list, and return all elements except the

first element in a list respectively.

In the definition of Ba, a!>x and a?<x are the complementary events of a?>x

and a!<x and are reserved for buffers only, that is, they cannot be used by designers.

They are defined as follows:

(buffer-in)
a?<x → p

a→.v−→ p[v/x]

where data is accepted from processes which evaluate a!<x. a?<x and a!<x will

be synchronised using the original parallel composition of CSP.

(buffer-out)
a!>x → p

a←.x−→ p
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where data is consumed by processes which evaluate a?>x. a!>x and a?>x will

be synchronised using the original parallel composition of CSP.

To allow these new events to be evaluated by the parallel composition, rules

(par1-par3) in Figure 1, and the other CSP operators in Figure 1, we create the set

B to include the event types: a ← .x and a → .x as follows:

B = {a←, a→| a ∈ channels(Σ)}

where channels(Σ) is the function which extracts the channel name from events.

After that, we update Σ to become Σ ∪ B. Thus, the original operator of the

CSP can now evaluate the new types of events.

According to Definition 3.1, an unbounded buffer has three options: (i) to input

data unconditionally; (ii) to output data if the buffer is not empty; (iii) to terminate

if the system terminates.

In designing Ba, FIFO policy is implemented by attaching new data to the end

of the buffer list and processes always consume the first element in the list.

The intuition behind introducing implicit buffers is to introduce delay between

sending and receiving messages. This will allow processes to continue their execution

without waiting for the receiver to get the message.

In two-way communications (between two processes) if buffers are introduced

in the middle of a communication then the sent message from the first process will

be stored in the buffer until the receiver process is ready to get the message. How-

ever, in multi-way communications (multiple processes communicate) as in CSP,

we should explain what asynchronicity means. In our model, we want to retain the

CSP model of multi-way communications with the addition of asynchronicity. In

multi-way communications, buffered channels may introduce non-determinism, as

Example 3.2 shows.

Example 3.2 Consider the system

a?>x → SKIP ‖ a?>y → SKIP ‖ a!<3 → SKIP

where the processes are not synchronised (i.e. interleaving); we write ‖ for parallel

composition with an empty synchronisation set.

According to our model the communications can happen in any order. If the

output is done first then the value 3 will be stored in Ba then retrieved by the

input event. However, which input event will get the value from the buffer (a?>x

or a?>y) is not specified. Either a?>x gets the value and a?>y will be waiting for

a new value, or the other way around.

In CSPa, we can avoid such non-determinism by synchronising between input

events or output events and the buffers, as shown in the example below.

Example 3.3 Let the following communications take place in a system:

a?>x → SKIP ‖{a?>} a?>y → SKIP ‖ a!<3 → SKIP

Assuming the buffer is empty, then according to our model the value 3 will
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be stored in Ba then retrieved by the input event. Here, the inputs events are

synchronised, therefore a?>x and a?>y should get the same value (which is 3).

Consequently, in CSPa, two kinds of asynchronicity are available:

(i) Synchronous communication, but with a delay between inputting and out-

putting values. This can be achieved by synchronising on input events and

output events. Thus, if buffers are empty, then all output events happen at

the same time and upload data to buffers, then all input events get the same

value from the buffers. Note that, CSPa adheres to CSP synchronisation rules,

where the whole a.n event is considered in synchronisation. For instance, in

CSP, an event a.3 can only be synchronised with a.3 or a.x if x is an input

variable (in the latter case, x will be substituted by 3).

A less strict synchronous communications can be achieved by synchronising

on input events only (as Example 3.3) or output events.

(ii) Interleaving communication, with values not lost but stored in the buffers.

However, in this case the order of execution of buffer’s events is non-

deterministic, as Example 3.2 demonstrates.

The event buffers can be considered as an area of a shared memory which can

be accessed by all processes. We define below a process, which we call buffered-Σ

to be the parallel composition of all Σ’s event buffers.

Definition 3.4 [Buffered-Σ] The process buffered-Σ is the parallel composition of

all the individual event buffers, that is, BΣ = |||i∈ΣBi. The interleaving operators

are used to emphasise that event buffers do not synchronise on inputting or out-

putting. The process buffered-Σ evolves by performing transitions (=⇒∗) to new

states: B′
Σ, B

′′
Σ, . . .

To allow the buffered-Σ to work with the whole system we will install it in

parallel with the system as a preprocessing step, thus allowing the execution of

the system in asynchronous mode. The buffered-Σ will work in parallel with the

whole system and synchronise on all events which have → or ←. The buffered-Σ is

installed using a parallel composition operator due to the fact that communications

between processes take place only if they are working in parallel.

Definition 3.5 [Buffered System] If p is a CSPa process then the buffered process

associated with p is p‖{a←,a→|a∈Σ}BΣ.

We use the silent action τ to represent the preprocessing step where the system

is placed in parallel with the buffered-Σ. This is safe as long as the externally visible

behaviour of the system is unchanged by the addition of an extra starting state with

a τ action, where this system has no option but to take this invisible action and

behave like a buffered system. Additionally, this will conceal the effect of adding

buffers to a system.

Finally, it is important to ensure that buffers do not introduce non-termination,

i.e., if the system terminates then buffers should terminate as well. To achieve this,

we introduce a new termination method for CSPa processes, namely synchronised

A.S. Al-Humaimeedy, M. Fernández / Electronic Notes in Theoretical Computer Science 312 (2015) 69–8876



termination, which replaces distributed termination in CSP. In synchronised termi-

nation, CSPa processes synchronise on evaluating the event
√
, i.e., termination.

Therefore, if processes terminate then the buffered-Σ will be forced to terminate as

well, see Proposition 3.8 for details (this feature is also significant in other parts of

our calculus, to deal with compensations and sessions). The following rule imple-

ments the synchronised termination:

(parST) p
√
−→STOP q

√
−→STOP

p ‖A q
√
−→STOP

Note that, rule (parST) replaces rules (parT1,2,3) in Figure 1.

We devote the rest of this section to prove that our buffered system is simu-

lated by the original system. That is, our buffered system does not introduce new

transitions which the original system cannot do.

Theorem 3.6 For every p ∈ CSPa, (p ‖{a←,a→|a∈Σ}B
′
Σ)  p, where B′

Σ is any

state of the process BΣ : BΣ =⇒∗ B′
Σ.

Proof To prove simulation according to Definition 2.3 we need to consider in turn

the transitions performed by the buffered system and match them with the transi-

tion performed by process p.

According to Definitions 3.1 and 3.4, the buffered system can do the following

transitions:

• The buffered process performs τ as follows:

(p ‖{a←,a→|a∈Σ}B
′
Σ)

τ−→ (p ‖{a←,a→|a∈Σ}B
′′
Σ) by rule (rec,par1)

The process p does not change, therefore: p=⇒p

• The buffered process performs a ← .x as follows:

(p ‖{a←,a→|a∈Σ}B
′
Σ)

a←.x−→ (p′ ‖{a←,a→|a∈Σ}B
′′
Σ) by rule (exch1,par3)

Then ,this transition is matched by the process p in the following way: p
a←.x−→ p′

• The buffered process performs a → .x as follows:

(p ‖{a←,a→|a∈Σ}B
′
Σ)

a→.x−→ (p′ ‖{a←,a→|a∈Σ}B
′′
Σ) by rule (exch1,par3)

Then, this transition is matched by the process p in the following way: p
a→.x−→ p′

• The buffered process performs
√

as follows:

(p ‖{a←,a→|a∈Σ}B
′
Σ)

√
−→ STOP by rule (exch1,parST)

This is because, according to Definition 3.1 and 3.4, buffered-Σ should evaluate

and synchronise on
√

if the environment offers this event and terminates.

Then, this transition is matched by the process p in the following way:

p
√
−→ STOP

✷

3.1 Direction, Deadlock, and Termination

In CSP, the unit of data can be divided into several components (e.g.

ItemID.ItemQ) and these components, in synchronous mode, can be simultane-

ously conveyed in both directions (e.g. a?ItemID!ItemQ, where ItemID is re-
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ceived and ItemQ is transmitted at the same time on channel a). In CSPa, similar

to [13,20], channels have a definite direction, where the whole unit of data is loaded

or consumed in one direction at a time (e.g. a?ItemID.ItemQ,a!ItemID.ItemQ).

Adding buffers to a calculus can significantly affect the performance of systems

and introduce extra design errors. For instance, a system may end up with a

deadlock if an output cannot be evaluated because a channel’s buffer is full. To

avoid introducing deadlocks, Hoare suggests these buffers to be unbounded. We

have followed Hoare’s approach here.

Thanks to rule (parST), the buffered Σ, which has been installed in parallel with

the system, will terminate if the system terminates. This is due to the termination

option that is activated externally by the environment.

Definition 3.7 [Terminated Process] A terminated process is a process which can-

not evolve more (i.e. can not make any transition). In CSPa, as the original CSP,

a process p is terminating if there exists p
a0−→ p1

a1−→ . . .
ak−→ pn

an−→ STOP where

n � 0 and STOP is the primitive process which can not make any transition.

If an =
√

then this process successfully terminated, otherwise the process is

blocked with no further transitions.

Note 1 In CSP, if a process cannot evolve more, then it is equivalent to STOP ;

see [20] for details.

Proposition 3.8 Buffers do not introduce deadlock or non-terminating sequences

of transitions, that is: (i) If the buffered-Σ terminates successfully then p terminates

successfully. (ii) If channel buffers are not empty when inputs are made, then the

buffered-Σ blocks only if p blocks. (iii) If the buffered-Σ has an infinite steps of

transitions then p also has it.

Proof We prove the proposition cases as follows:

(i) If the buffered-Σ terminates successfully then the process p also terminates

successfully. This is because the
√

events are observable in the environment if

the process p successfully terminates. The
√

events will resolve the external

choice with the SKIP option as Definition 3.1 shows, using rule (parST).

(ii) If channel buffers are not empty, That is the system will not block be-

cause there is no data to retrieve, then as a consequence of Theorem 3.6, if

p‖{a←,a→|a∈Σ}BΣ blocks or has infinite sequence of transitions, then p has this

block or infinite sequence of transitions.

✷

4 The Relationship Between CSPa and CSP

In this section, we first discuss the encoding of CSPa into CSP, and then we reason

on the correctness of our encoding by proving that the encoded processes are weakly

bisimilar to the original processes of our calculus (Theorem 4.3). This results show

that CSPa does not strictly enhance the expressiveness of CSP in the sense that

the new constructs in CSPa can be encoded in CSP, however, CSPa simplifies the
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specification and verification of asynchronous communications, in the context of

CSP, by providing explicit primitives for modelling them.

Thanks to the encoding, we can use the denotational models of CSP to reason

on the correctness of CSPa systems. Informally speaking, the main differences

between CSPa and CSP are the hidden communications with the buffered-Σ and

the synchronised termination.

To facilitate the encoding we define the new termination signal term which will

be used to enforce synchronisation when processes terminate. This termination

signal will be hidden later in the system.

Moreover, we encode Ba (defined in Definition 3.1) to be the following CSP

process:

Ba(s) = if null(s)

then ((a←.x −→ Ba(〈x〉))�(term → SKIP ))

else ((a→.head(s) −→ Ba(tail(s))�(a←.x −→ Ba(s
�〈x〉)))

� (term → SKIP ))

where null(s), head(s), and tail(s) are standard functions on lists, which check if a

list is empty, retrieve the first element in a list, and return all elements except the

first element in a list, respectively.

We also encode BΣ to be the following CSP process: BΣ = |||i∈ΣBi.

We define the encoding from CSPa into CSP as follows:

Definition 4.1 The encoding [.] : CSPa → CSP is defined as: [.] = �p� \{term},
where �p� is defined homomorphically except for the following:

�SKIP �= term → SKIP

�a?> → p�= a←.v → �p[v/x]�

�a!< → p�= a→.x → �p�

�p‖Aq�= (�p�‖{term}∪A�q�)

Lemma 4.2 If q = p\A then:

(i) if σ /∈ A then p
σ−→ p′ ⇔ q

σ−→ q′, where q′ = p′\A.

(ii) if σ ∈ A then p
σ−→ p′ ⇒ q

τ−→ q′, where q′ = p′\A. Also, q
τ−→ q′ implies

either p
σ−→ p′ for σ ∈ A or p

τ−→ p′.

Proof To prove (i), we first prove if σ /∈ A then p
σ−→ p′ ⇒ q

σ−→ q′ and q′ = p′\A.

If σ /∈ A then σ has two cases:

(i) If σ is of the form a, a←, a→ or τ , then according to rule (hid1) if p
σ−→ p′

and σ /∈ A then q
σ−→ q′ and q′ = p′\A.

(ii) If σ =
√
, then according to rule (hid3) if p

√
−→ STOP then q

√
−→ STOP ,

which implies that q′ = STOP , however, in CSP, STOP\A = STOP (see

[20]), therefore, q′ = STOP\A.
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Secondly, we prove that if σ /∈ A then q
σ−→ q′ ⇒ p

σ−→ p′ where q′ = p′\A.

If σ /∈ A then σ has two cases:

(i) If σ is of the form a, a ←, a → or τ , then by rule (hid1) if q = p\A σ−→ p′\A,

this implies that p
σ−→ p′.

(ii) If σ =
√
, then by rule (hid3) if p\A

√
−→ STOP , this implies that p

√
−→ STOP .

However, in CSP, STOP\A = STOP (see [20]), therefore, q′ = STOP\A.

Thus, if σ /∈ A then p
σ−→ p′ ⇔ q

σ−→ q′ where q′ = p′\A.

To prove (ii), we first prove that if σ ∈ A then p
σ−→ p′ ⇒ q

τ−→ q′ and

q′ = p′\A, which is a direct result of rule (hid2).

Secondly, we prove that q
τ−→ q′ ⇒ p

σ−→ p′, for σ ∈ A, where q′ = p′\A, or

p
τ−→ p′.
q

τ−→ q′ can take place in two cases:

(i) If p
τ−→ p′ by rule (hid1), then we are done.

(ii) If p
σ−→ p′ and σ ∈ A by rule (hid2).

✷

Theorem 4.3 Let [.] : CSPa → CSP be the encoding in Definition 4.1. For every

p ∈ CSPa, p ≈ [p].

Proof We give the proof only for the four non-homomorphic cases of the encoding.

The homomorphic ones follow trivially.

We will show that the above four cases of the encoding are weakly bisimilar to

their source processes. These four cases are described as follows:

(i) SKIP

We prove that: if SKIP
√
−→ STOP , then [SKIP ]

τ−→∗ √
−→ STOP .

The transition SKIP
√
−→ STOP follows by rule (skip) and is the only

transition for SKIP .

This transition is matched by the encoded process in the following way:

[SKIP ]
τ−→

√
−→ STOP by rules (prefix,hid2,skip).

In the other direction, the only possible transition for [SKIP ] is [SKIP ]
τ−→

SKIP by rules (prefix,hid2).

This transition is matched by: SKIP =⇒ SKIP .

Therefore, according to Definition 2.2 SKIP ≈ [SKIP ].

(ii) a?>x → p

We prove that: if a?>x → p
a←.v−→ p[v/x], then [a?>x → p]

a←.v−→ [p[v/x]].

The only possible transition for (a?>x → p) is: (a?>x → p)
a←.v−→ p[v/x] by

rule (asy-in).

This transition is matched by the encoded process in the following way:

[a?>x → p]
a←.v−→ [p[v/x]] by rules (prefix-in,hid1).

In the other direction, the only possible transition for [a?>x → p] is:

[a?>x → p]
a←.v−→ [p[v/x]] by rules (prefix-in,hid1).

This transition is matched by the CSPa process in the following way:
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(a?>x → p)
a←.v−→ p[v/x] by rule (asy-in).

Therefore, according to Definition 2.2 (a?>x → p) ≈ [a?>x → p]

(iii) a!<x → p

We prove that: if a!<x → p
a→.x−→ p, then [a!<x → p]

a→.x−→ [p].

The only possible transition for (a!<x → p) is: (a!<x → p)
a→.x−→ p by rule

(asy-out).

This transition is matched by the encoded process in the following way:

[a!<x → p]
a→.x−→ [p] by rules (prefix-out,hid1).

In the other direction, the only possible transition for [a!<x → p] is:

[a!<x → p]
a→.x−→ [p] by rules (prefix-out,hid1).

This transition is matched by the CSPa process in the following way:

(a!<x → p)
a→.x−→ p by rule (asy-out).

Therefore, according to Definition 2.2 (a?>x → p) ≈ [a?>x → p]

(iv) p‖Aq
We prove that if σ �= √

then p‖Aq σ−→ r implies [p‖Aq] σ−→ [r], otherwise,

p‖Aq
√
−→ r implies [p‖Aq] τ−→∗ √

−→ [r].

Let first consider the possible transitions for (p‖Aq):
• If p

σ−→ p′ and σ /∈ A then (p‖Aq) σ−→ (p′‖Aq) by rule (par1).

This transition is matched by the encoded process in the following way:

We know that, if [p]
σ−→ [p′] then �p�

σ−→ �p′� by Lemma 4.2.

This implies that, if �p�
σ−→ �p′� and σ /∈ A then

(�p�‖{term}∪A�q�) \{term} σ−→ (�p′�‖{term}∪A�q�) \{term} by rules

(par1,hid1).
• If q

σ−→ q′ and σ /∈ A then (p‖Aq) σ−→ (p‖Aq′) by rule (par2).

This transition is matched by the encoded process in the following way:

We know that, if [q]
σ−→ [q′] then �q�

σ−→ �q′� by Lemma 4.2.

This implies that, if �q�
σ−→ �q′� and σ /∈ A then

(�p�‖{term}∪A�q�) \{term} σ−→ (�p�‖{term}∪A�q′�) \{term} by rules

(par2,hid1).
• If p

σ−→ p′ and q
σ−→ q′ then (p‖Aq) σ−→ (p′‖Aq′) if σ ∈ A by rule (par3).

This transition is matched by the encoded process in the following way:

We know that, if [p]
σ−→ [p′] and [q]

σ−→ [q′] then �p�
σ−→ �p′� and �q�

σ−→
�q′� by Lemma 4.2.

This implies that, if �p�
σ−→ �p′� and �q�

σ−→ �q′� then

(�p�‖{term}∪A�q�) \{term} σ−→ (�p′�‖{term}∪A�q′�) \{term} if σ ∈ A by rules

(par3,hid1).

• If p
√
−→ STOP and q

√
−→ STOP then (p‖Aq)

√
−→ STOP by rule (parST).

This transition is matched by the encoded process in the following way:

We know that, if [p]
τ−→∗ √

−→ STOP and [q]
τ−→∗ √

−→ STOP then

�p�
term−→ τ−→∗ √

−→ STOP and �q�
term−→ τ−→∗ √

−→ STOP by Lemma 4.2.

This implies that, if �p�
term−→ τ−→∗ √

−→ STOP and

�q�
term−→ τ−→∗ √

−→ STOP then (�p�‖{term}∪A�q�) \{term} τ−→
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(SKIP‖{term}∪ASKIP ) \{term} τ−→ τ−→
√
−→ STOP by rules

(par3,hid2,parT1,hid1,parT2,hid1,parT3,hid3).

In the other direction, since [p‖Aq] = (�p�‖{term}∪A�q�) \{term} by Defini-

tion 4.1, the possible transitions for [p‖Aq] are:
• If σ /∈ {term} and [p]

σ−→ [p′], then by Lemma 4.2 if [p]
σ−→ [p′] then

�p�
σ−→ �p′�.

This implies that, if �p�
σ−→ �p′� then (�p�‖{term}∪A�q�) \{term} σ−→

(�p′�‖{term}∪A�q�) \{term} where σ /∈ A by rules (par1,hid1).

This transition is matched by the CSPa process in the following way:

If p
σ−→ p′ then (p‖Aq) σ−→ (p′‖Aq) if σ /∈ A by rule (par1).

• If σ /∈ {term} and [q]
σ−→ [q′] then by Lemma 4.2 if [q]

σ−→ [q′] then �q�
σ−→

�q′�.
This implies that, if �q�

σ−→ �q′� then (�p�‖{term}∪A�q�) \{term} σ−→
(�p�‖{term}∪A�q′�) \{term} if σ /∈ A by rules (par2,hid1).

This transition is matched by the CSPa process in the following way:

If q
σ−→ q′ then (p‖Aq) σ−→ (p‖Aq′) if σ /∈ A by rule (par2).

• If σ /∈ {term}, [p] σ−→ [p′] and [q]
σ−→ [q′] then by Lemma 4.2 if [p]

σ−→ [p′]
and [q]

σ−→ [q′] then �p�
σ−→ �p′� and �q�

σ−→ �q′�
This implies that, if �p�

σ−→ �p′� and �q�
σ−→ �q′� then

(�p�‖{term}∪A�q�) \{term} σ−→ (�p′�‖{term}∪A�q′�) \{term} if σ ∈ A by rules

(par3,hid1).

This transition is matched by the encoded process in the following way:

If p
σ−→ p′ and q

σ−→ q′ then (p‖Aq) σ−→ (p′‖Aq′) if σ ∈ A by rule (par3).
• If σ ∈ {term}, σ �= τ , [p]

τ−→ [p′] and [q]
τ−→ [q′] then by Lemma 4.2 if

[p]
τ−→ SKIP and [q]

τ−→ SKIP then �p�
term−→ SKIP and �q�

term−→ SKIP

This implies that, if �p�
term−→ SKIP and �q�

term−→ SKIP then

(�p�‖{term}∪A�q�) \{term} τ−→ (SKIP‖{term}∪ASKIP ) \{term} by rules

(par3,hid2).

This transition is matched by: (SKIP‖{term}∪ASKIP ) \{term} ⇒
(SKIP‖{term}∪ASKIP ) \{term}

Therefore, according to Definition 2.2 (p‖Aq) ≈ [p‖Aq]
✷

5 Implementing CSPa in FDR

We provide, in this section, an implementation of the buffered model of CSPa in

FDR [11] which is the model checker of CSP. FDR uses CSPM [22] as the input

language. CSPM is the machine readable version of CSP. Encoding CSPa into

CSPM allows CSPa users to use other CSP tools, like the trace animator ProBE [10].

To implement CSPa in FDR we use the encoding statements (listed in Definition

4.1). We also encode BΣ to be the CSP process defined in Section 4. We use in and

out keywords in front of channel names to encode a ← and a → events respectively.

Consequently, in.a?x and out.a!x represent a?>x and a!<x events respectively in

the theoretical model.

A.S. Al-Humaimeedy, M. Fernández / Electronic Notes in Theoretical Computer Science 312 (2015) 69–8882



bufferedEvents = let

bf(a,s) = if null(s) then ( (out.a?x -> bf(a,<x>)) [] SKIPP )

else ((in.a!head(s) -> bf(a,tail(s))[]

#s<N & (out.a?x -> bf(a,s^<x>))) [] SKIPP)

within (||| x:ev @ bf(x,<>))

According to our model this buffer should be created for all events in Σ. However,

to reduce the memory consumption we create this buffer for events in ev only, where

ev is the set of asynchronous events provided by the user. If the user is happy to

include all events then set Sigma can be used. All the buffers start empty.

In our implementation, we prefer to design the buffered-Σ to be bounded and

for a set of events instead of the whole Σ. This is to reduce the consumption of

memory and accelerate the assertion time in FDR. Although these limits are not

requirements of FDR we prefer to give the user the ability to accelerate the assertion

time and reduce memory consumption.

The preprocessing step in our theoretical model, which installs the buffered-Σ, is

encoded in our implementation by the function asy. This function puts the system

process in parallel with the buffered-Σ.

asy(p)= p [| {|in.a , out.a, term | a<-ev |} |] bufferedEvents

To deal with termination, users should use SKIPP instead of SKIP to evaluate

the new terminal signal term first, and use par function instead of ‖A to enforce

synchronisation on successful terminations of processes. Synchronisation is done

through term.

SKIPP = term -> SKIP

par(p,A,q)= p [| union({|term|},A) |] q

If a system terminates the buffers will be forced to terminate due to the exter-

nal choice with SKIPP . This choice is resolved by the environment. Thus, the

buffered-Σ will terminate as soon as the system terminates. This will avoid the

problem of dangling buffers when the system terminates.

6 Example

In this section, we provide an example of a simple ordering system to demonstrate

how the asynchronous communications can be used.

A simple ordering system for a company requires departments to send an order

of their needed item with the quantity needed to the purchasing department. The

purchasing department then sets the connection to the internet and sends the order

to the supplier as shown in Figure 2.

Assuming the data media is reliable in the company, we design the communica-

tions inside the company to be done in a synchronous mode to ensure fast exchange

of information between the company’s departments (e.g. the event porder). How-

ever, if the department communicates with other organisations outside the company

the communication is done in an asynchronous mode assuming the media is unreli-
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Figure 2. Ordering system state diagram

able (e.g. the event order). Events which do not need any mode of synchronisation

can be done in interleaving mode (e.g. the event setcon).

This system can be written in CSPa as follows:

department= porder!itemN.itemQ −→ department

Pdepartment= porder?itemN.itemQ −→ setcon.internet −→
order!<dID.itemN.itemQ −→ Pdepartment

supplier= setcon.internet −→ order?>dID.iN.iQ −→ supplier

system= (department‖{|porder|}Pdepartment)|||supplier

6.1 Evaluating the example using FDR

In this section, we reason on the correctness of our example by encoding it in our

implementation. In this way, we can verify properties such as deadlock freedom,

divergence freedom, or check if a process refines another.

In our implementation, the example should be written as follows:

department = porder!2.15 -> department

Pdepartment = porder?itemN.itemQ -> setcon.internet ->

out.order!1.itemN.itemQ -> Pdepartment

supplier= setcon.internet -> in.order?dID.iN.iQ -> supplier

sys = par( par(department, {|porder|}, Pdepartment), {}, supplier)

system = asy(sys)

First we run our code in the trace animator. It shows the possible orders of

communications (here we evaluate four consecutive orders to show what will happen

if the buffer is full or empty), and shows that if the system terminates then the

buffers will terminate (here we replace the recursive call in processes with SKIP

to test termination). Figure 6.1 presents a screen-shot of the possible traces of our

example produced by ProBE.

Figure 4 presents a screen-shot of our example executed in FDR with the fol-

lowing assertions tested:

assert sys [T= system

assert bufferedEvents:[deadlock free]

assert bufferedEvents:[livelock free]

assert system:[deadlock free]
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Figure 3. The possible execution of the example in ProBE

assert system:[livelock free]

assert sys:[deadlock free]

assert sys:[livelock free]

Most importantly these assertions (in particular, assert sys [T = system)

show that the system (in the example) trace refines our buffered version of the

system. This means that our model produces the same set of traces as the example
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system without buffers. Additionally, we checked that the different processes in

our system are deadlock free and livelock free as shown in the assertion statements

listed in the figure, which shows that our model does not introduce deadlocks or

livelocks if the original system does not have them.

Figure 4. Assertion statements to check system properties

7 Related Work

Buffers are a well known mechanism to implement asynchronous communications,

and they have been intensively used in process calculi literature.

In CSP, the use of buffered channels to facilitate asynchronous communications

has been previously discussed by Hoare [13]. This model is not formally imple-

mented, and assumes asynchronous communications only.

Buffered channels within CSP have been discussed also in [20], where all or a set

of channels can be selected to be buffered between two processes. Installing buffers

in two-way communications was enough for the purpose of this model which is

proving that the correctness of a network of processes is independent of the amount

of buffering added. However, in our model, we aim to provide a practical model

where asynchronous communications are available as primitive communications in

addition to the standard synchronous and interleaving communications. Therefore,

we extend CSP with built-in buffers which can be used anywhere in the system.

Additionally, our model retains the multi-way communication mode of CSP.

CSP# (the input language of PAT [23]) also extends CSP’s syntax with buffered

channels to support mixed synchronous/asynchronous communications. However,

CSP# does not support the generalised parallel composition operator, therefore all

shared channels are communicating in synchronous mode with no option to change

this. In our model, designers have the option to choose which channel to synchronise

on.

An asynchronous version of an early CSP-based language was mentioned in [7].
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However, our approach is different. Our calculus preserves the notion of an output

guard, allowing the same process to use synchronous and asynchronous communi-

cations (see the example in Section 6), whereas the language in [7] does not include

output guard, like in the asynchronous π-calculus [15], thus synchronous communi-

cations are not allowed. Moreover, the language in [7] has no generalised parallel

composition and the parallel composition is only allowed at the top-level (see [19]

for more details).

Early proposals which support asynchronous communications by forcing interac-

tions between two processes to be always mediated by buffers are described in [8,4],

and in [3] buffers have been introduced to the π-calculus [21] to facilitate asyn-

chronous communications as an alternative to the no-output-guards approach im-

plemented in [15]. In [3], the encodability between the two calculi has been studied.

While we use the same concept by introducing buffers in the middle of communi-

cations, in our model, we buffered the communications between multiple processes

and our calculus supports mixed synchronous/asynchronous communications.

In the context of SOC, to the best of our knowledge our model is the first to mix

synchronous/asynchronous communications; other calculi support only synchronous

communications [5,6] or only asynchronous communications [16,24].

8 Conclusion and Future Work

Asynchronous communications are crucial in environments with unreliable media

(like the internet). Additionally, synchronous communications are important to

transfer critical data. For this reason, in this paper we define a calculus which sup-

ports mixed asynchronous/synchronous communication, by introducing an implicit

buffer with each channel. We formally extended CSP’s syntax and operational

semantics with buffer loading and consuming primitives. In future work we will

investigate how these buffered channels may work in mobile environments where

channels can be sent as data. Additionally, we plan to introduce a model for creat-

ing and maintaining sessions within the framework of CSP.
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